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Abstract—The paper is concerned with the steady-state convective diffusion to a heat-conducting reacting
sphere in a laminar translational and shear flow, with a nonisothermal chemical reaction proceeding on its
surface at the rate arbitrarily dependent on temperature and concentrations.

Itis shown that for the integral heat and mass fluxes of reacting components to a particle (i.e. mean Nusselt,
Nu, and Sherwood, Sh,,, numbers) to be determined at small Peclet numbers, it suffices to solve the following
universal algebraic (transcendental) system of equations

Nu Sh Sh
Shy,=f[—,—2,..,—M ),
™ f"'(Nuw Shy., Sth>

M
Nu= Y h,Sh,,
m=1
which is appreciably simpler than the initial system of partial differential equations. The system suggested
makes it possible to obtain for the Sherwood and Nusselt numbers the first four (shear flow), and the first
three (translational flow), terms of the corresponding asymptotic expansion in small Peclet numbers.

An irreversible isothermal 2nd-order reaction and a successive stepwise 1st-order reaction have been
studied. The case of nonisothermal surface reaction, which proceeds following the Arrhenius law with one
reacting component present in the flow, has been studied in detail. Adsorption on the particle surface, the rate
of which is governed by the Langmuir kinetics, is analyzed.

Based on comparison with the earlier results for isothermal reactions at moderate and large Peclet
numbers, it is shown that with a suitable choice of the governing parameters Sh,,. (Nu ) the suggested
algebraic system can also be successfully applied for approximate determination of the mean Sherwood
numbers within the whole range of Peclet numbers.

The results obtained enable investigation of the inverse mass and heat transfer problem for reacting
particles in the flow, i.e. allow one to explicitly determine the dependence of the surface reaction rate on

concentrations from the available integral fluxes that can be determined experimentally.

NOMENCLATURE k, dimensionless reaction rate constant;
a, particle radius; ko, dimensional reaction rate constant;
a,, radius of a volumetrically equivalent L, differential operator defined in equation
sphere; (3.7N;
Cons> dimensionless concentration of mth M, number of reagents participating in
component; reaction;
ck, dimensional concentration ; m, ordinal number of reagent;
Cmoy  CONcentration at infinity; Nu, mean Nusselt number;
Coms solution of auxiliary problem (7.1); Nu_, mean Nusselt number in diffusional mode
D,, diffusivity of the mth species in mixture; of reaction;
E, activation energy; P, diffusional Peclet numbers (1 < m < M),
F,, dimensional surface reaction rates; Py, heat transfer Peclet number;
S dimensionless surface reaction rates; p, parameter defined in equation (5.7);
GXG;;), dimensional (dimensionless) elements of Q.. parameters occurring in equation (3.2);
the matrix of shear factors; R, universal gas constant;
g parameter defined in equation (5.3); r, 6, ¢, spherical coordinate system moving with
H,, dimensional heat of mth reaction; particle;
R dimensionless heat of mth reaction; S, function defined in equation (6.4);
I, integral mass flux of the mth reagent to the S, surface of sphere with radius r;
particle surface; Shq, mean Sherwood number for a particle at
I,., integral mass flux in diffusional mode of rest;
reaction; Sh,, mean Sherwood number for diffusional
J, integral heat flux to a particle; mode of reaction;
J s parameter defined in equation (3.15); Sh,,, mean Sherwood number of the mth com-
K, parameters defined in equation (5.9); ponents of reacting substance;
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s, parameter defined in equation (5.7);

T, dimensionless temperature in liquid (gas)
flow;

T*, dimensional temperature in flow;

T, liquid (gas) temperature at infinity;

t, dimensionless temperature inside a
particle;

t*, dimensional temperature inside a particle;

U, characteristic flow velocity;

v, translational flow velocity at infinity;

u, liquid velocity vector;

u, liquid velocity components in Cartesian
coordinate system;

X;, Cartesian coordinate system moving with a
particle (i = 1, 2, 3);

z, parameter defined in equation (6.3).

Greek symbols

o, numerical factor occurring in equations
(3.3);

[ parameters occurring in equations (4.4);

B, ratio between dynamic viscosities of a
droplet and surrounding liquid ; parameter
defined in equations (6.3);

T, hyperbola (6.7);

7, parameter defined in equations (6.8);

A, Laplace operator;

é, ratio between thermal conductivities of
particle and liquid (gas);

g small parameter introduced into equation
(3.2);

oo fundamental solutions of equations for
temperature and concentration distri-
butions in the external flow region Q_ ;

K, order of reaction;

A, shape factor (A = 1 for a sphere);

Al thermal conductivity of a particle;

A, thermal conductivity of liquid (gas);

U, dynamic viscosity of liquid;

£, dimensionless resistance force of a particle
(droplet);

u®, coefficients occurring in equations (3.5);

o, ‘contracted’ coordinate;

o, parameter defined in equation (6.3);

P, unknown functions, to be determined, that
enter into relations (3.3) and (4.2);

ha thermal diffusivity ;

¥, unknown function entering into relations
(3.3) and (4.2);

v, stream function;

Q, internal flow region;

Q. external region;

w, dimensionless characteristic parameter de-
fined in equation (6.1).

1. INTRODUCTION

For T1HE first time the problem of heat and mass
transfer of a sphere in a steady-state Stokes flow at
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small Peclet numbers has been studied by Acrivos and
Taylor [1] using the method of matched asymptotic
expansions. Concentration far from the particle and on
its surface was assumed to be constant. The first five
terms of asymptotic expansion have been obtained for
the mean Sherwood number. Brenner [2] has extended
this problem to the case of an arbitrarily shaped
particle; a 3-term expansion in Peclet numbers has
been obtained for the mean Sherwood number. Rim-
mer {3, 4] has considered a similar problem for a
sphere using the results of Proudman and Pearson [ 5]
for the liquid velocity field which were obtained by the
method of matched asymptotic expansions in small
Reynolds number.

Frankel and Acrivos [6] have considered convective
diffusion to a sphere freely suspended in a simple shear
flow. A 2-term expansion has been obtained for the
mean Sherwood number. Batchelor [7] has extended
these results to the case of a particle of any shape freely
suspended in an arbitrary linear flow. On the basis of
Batchelor’s results [ 7], Acrivos [8] has obtained for a
sphere the first four, and for an arbitrarily shaped
particle the first three, terms of the corresponding
asymptotic expansion.

Convective diffusion to a sphere and an arbitrarily
shaped particle in a uniform translational flow with
an isothermal lIst-order reaction occurring on its
surface was considered by Gupalo and Ryazantsev [9]
and Gupalo, Ryazantsev and Syskov [10]. Taylor [11]
has studied mass transfer of a sphere with chemical
reactions of the first and second orders occurring on its
surface. The case of an arbitrary kinetics of the surface
reaction on a sphere in Stokes flow was considered by
Gupalo et al. [12]. Gupalo, Ryazantsev and Chalyuk
[13] have determined the temperature field inside and
outside a heat-conducting particle in the case of
complete absorption of reagent by the particle surface.

2. STATEMENT OF THE PROBLEM

Consideration is given to the analysis of convective
diffusion to a reacting sphere in a laminar translational
and shear flow with a nonisothermal chemical reaction
occurring on its surface at the rate arbitrarily de-
pendent on temperature and concentrations. The
particle is assumed to be heat-conducting, and the
reacting components are thought to be at rather small
concentrations so that the presence of surface reaction
does not influence the flow and particle parameters.
The effect of heat and pressure diffusion is also left out
of account.

The dimensionless convective diffusion and heat
conduction equations as well as the boundary con-
ditions specifying uniformity of temperature and con-
centrations far from the particle, temperature con-
tinuity, ‘reaction law’ and heat balance on the particle
surface, as well as temperature boundedness at the
particle centre are of the form
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Ac, = P, (wV),, (1 <r<oo)m=1,.., M,

2.1
AT = Py(uV)T, (1 < r < o0), (2.2)
At=0,(0<r<1), (2.3)
r—»o,¢,—0,T-0, 24)
r=1,T=1y (2.5)
r=1, —dc,/or = f(T, cy, ..., ), (2.6}
r=1, - ‘2—7; + 5% = ..,‘%'::1 hnfulT,c1s o cy), (2.7)
r=0,]t| < oo, (2.8)
G =Cu(l—C ) T* =T (1-T), t* =T _(1-1),
P, —--‘;—Z,Po =“—xq,5 =%,hm=———c'"°il;:D'",
FulTs €1y oo Cpp) = A(Cpos D) " LF(T*, X, ..y C).
29)

For the time being, it is assumed thatc,,,, # 0(m = 1,
..., M); henceforth these restrictions will be removed.

Equations (2.1) and (2.2) and boundary conditions
(2.6)and (2.7) for the case of a non-conducting particle
can be found in [14].

3. SHEAR FLOW

In the case of an arbitrary shear flow, the liquid
velocity distribution far from a particle will have the
following form in dimensionless variables

r— o, = Gx;, Gy =0 (i.j=123),
(G;=G:G™ ', G = nl;ajx|c;;j, U = aG).

Here and subsequently, the summation is carried
out over the repeated indices i and j, G¥ are the
elements of the matrix of shear factors, u; are the
components of liquid velocities in the Cartesian system
of coordinates x,(i = 1, 2, 3).

In particular, in the axisymmetric case (G;, = G,,
= 1/2, G453 = —1 and G;; = 0 at i # j) the liquid
velocity distribution, which satisfies the above con-
ditions at infinity, is determined, in Stokesian approxi-
mation, by the stream function

2 2 2
1 8w ¥)
risin o(r, §)

Here d(w, ¥)/d(r, 8) is the Jacobian of the functions w
and y.

Let us examine the boundary-value problem
(2.1)-(29) by the method of matched asymptotic
expansions in small Peclet numbers. It is assumed that

e-0,P,=¢0,,0,=01),m=0,1,... M (32)

and the entire flow region is divided into the inner, Q,

1 5 3
V= —<r3 -4 -r‘z)sin29c050,

V)w =

(3.1)
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= {1 <r < 0(¢7'?)}, and the outer,Q = {O(c"'?)
< r}, subregions (see, e.g. [8]). As usual, a ‘contracted’
coordinate, p = &!/?r,is introduced in the outer region
and the solution in each of the subregions is sought
separately in the form of internal and external expan-
sions. In constructing an asymptotic solution in the
internal region, the boundary conditions on the par-
ticle surface (2.5)-(2.7) are used, while in the outer
region, the boundary conditions at infinity (2.4) are
employed; the resulting unknown constants are de-
termined by using the matching technique.

The above situation (3.2) is typical of slow gas
motions, where 0.5 < D ™! < 2.0 [15].

Batchelor [7] and Acrivos [8] have shown that in
the case of an arbitrary Stokesian shear flow past a
particle, equations (3.1), the temperature and con-
centration distributions in the outer region Q2 can be
expressed by the fundamental solution of the
equations

A, L= Gx0lnf0x;, Pm=Pn’r(m=01,.., M)

Therefore, by virtue of the properties of {,[8], the
temperature and concentration distributions at the
inner boundary of the outer region Q_ (ic. at r ~
£~ 1) can be presented as (m = 1, ..., M)

r=0("1%),T=¥P,P,.., P,
x {r~! — aP§? + O(P3)},
r=0("1), ¢, = D, (Py, Py, ..., Py)

x{r~! —aP}? + O(P2)}. (3.3)

Here a = a(G,;) is a numerical factor, while ¥ and @,
are the unknown functions which are determined in
the course of the problem solution. A general ex-
pression for determining the value of the parameter
has been obtained by Batchelor [7]. Thus, for an
axisymmetrical case, equation (3.1), « = 0.399 [7],
while for the case of a simple shear (one off-diagonal
element of the matrix G;; is equal to unity and the
remainder, to zero) a« = 0.258 [6].

The inner temperature and concentration expansion
in the region Q,, as well as temperature distribution
inside a particle involve the following representation

3
T =Y PY2T® 4 o(P3?),
k=0
3
Y Pt + o(P3?),

...
]

3
I
»
M

P2 B 4 o(P32Ym = 1, ..., M), (34)

k

o

where the functions ¢, TW and ¢® satisfy the
equations

Al = 0, AT® = 0, AtW
=0 at k=0,1,
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*y (k) -3 (k)
Acy = —u) r~rux;, AT
Sux, AP =0

at k =2, 3.

= — g®p-
(3.5)

In deriving the second group of equations (3.5) at k
= 2, 3 it has been taken into account that the first
terms of the inner expansion (3.4) and (3.5)atk = 0, 1
depend only on the radial coordinate r and are
determined by the binomial of the form A + Br™!,
where for each ¢, T® and 1™ (k = 0, 1) there are their
own constants A and B determined from the boundary
conditions (2.5)-(2.8) and the condition of matching
with the solution in the region Q_ (3.3); in (3.5) the
summation is carried out over the index i, u®, ¢® =
const.

For the analysis of equations (3.5), let us use the
formula

1 1 2n n
=-— = — in 6 wd
<w) - L wds i J.O L sin 8 wdfd ¢

to introduce the mean value operation, which has been
used by Acrivos [8]. Here S, is the surface of the sphere
with radius r.

Note that the equality {w(r)> = w(r) holds for any
functions w depending on the coordinate r alone.

Integration of equation (3.5) over the surface of the
sphere with radius r and account for the equality (u;x;>
= 0 [8] yield

L{ch =0, IKTW) = 0, L) =0,
1d ,d
L=ra"a

(3.6)

2 k=0,1,23.

3.7)

By virtue of (3.4) and (3.7), the following equations
are obtained accurate to o(s*/?) for the complete mean
values

Lic,> =0, ILT> =0, L) =0. (38)

The solution of equations (3.8), which satisfies the
condition of matching with the solution in the outer
region Q (3.3), will, to the same order of accuracy,
have the form

<cm> = q)m(P07 Pls ey PM)(r_1 - aPrln/z)’
(T) =¥(Py, Py, .., Py)r™! — aPy?),
> = WPy, Py, ..., Py)(1 — aPL?).  (39)

Here the form of the expression for {¢)> is due to the
boundary conditions (2.5) and (2.8).

Since by virtue of equations (3.5) the ¢, T® and ¢*
atk = 0,1 depend only on the distance to the centre of
the sphere r, then for any analytical function f the
following formula will be valid accurate to o(e37?)

ST ey ooen) =fKTH, e, o5 Lend),  (3.10)
which is proved by direct verification with account for
equation (3.4) and (3.6).

The mean Sherwood and Nusselt numbers are
determined from
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Nu= — =\,

<ar>

Averaging of the boundary conditions (2.6)and (2.7)
and use of equations (3.9) and (3.10) will yield the
following algebraic (transcendental) system of equa-
tions to determine the mean Sherwood and Nusselt
numbers

r=1

Nu  Sh, Shy
Sh = . ey )
" f"'(Num’Shlw’ Sth)
m=1,.., M, (311)
M
Nu= Y h,Sh, (3.12)
m=1

Here, the last of the above equations has been obtained
by substituting into the boundary condition (2.7) the
expressions for f,, from equation (2.6), while the values
of Sh,,., Nu_, correspond to purely diffusional (ther-
mal) mode of reaction (which complies with the
boundary conditions on the sphere surface r = 1,¢,, =
1, T = 1) and have been obtained by Acrivos [8]

Shy, =1+ aPy? + o> P, + a® P32
+0o(P32) ~ (1 — aPY?)Y,

o=1+aP{? + a?P, + o*>P3?

Hx (1 —aPi?)~ L

Nu

+ o( P (3.13)

Hence, it is shown that in the case of the surface
chemical reaction accompanied by heat release, in
order to determine the integral heat and mass inflows
of reacting components to the particle at small Peclet
numbers, it is sufficient to solve the algebraic (transcen-
dental) system of equations (3.11) and (3.12) which is
much simpler than the initial system of partial differen-
tial equations (2.1)-(2.9).

It is seen from (3.11) and (3.12) that at small Peclet
numbers the ratio between thermal conductivities of
the particle and surrounding liquid does not influence
the integral characteristics of the process. Variation of
the parameter ¢ [in the boundary condition (2.7)]
leads only to redistribution of local thermal and
diffusional fluxes over the sphere surface, with the
respective total fluxes being unchanged.

The system (3.11) and (3.12) can be written in
dimensional form in terms of the integral fluxes

J
I, =4na*F,| (T, - -\,
1 Iy
(Clz 11:14>,'.',<CM1—5:>:I, (314)
M

J=Y HJ, (m=1,..M)

m=1

= 4naD,(0ck/or)| -y, J = 4mal{oT*/or)|
o =4naD,Sh, ., J, =4nailNu .

r=1

(3.15)

maocd
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Here 1,,and J are total fluxes of reacting substance and
heat to the sphere surface; the expressions for Sh,, .
and Nu_, are determined by equation (3.13).
Equations (3.14) and (3.15) are more suitable than
equation (3.11) and (3.12) in those cases when at least
one of the concentrations of reacting components in
the incident flow far from the particle is zero, i.e.

M
at H Cme = 0.
m=1

4. TRANSLATIONAL STOKESIAN FLOW

For a uniform translational Stokesian flow the
liquid velocity distribution in dimensionless variables
is determined by the stream function

= %(rz - -;-r + %r")sin‘z 8.

Here the characteristic velocity scale is the flow
velocity at infinity U = U _; the angle 8 is reckoned
from the forward stagnation point on the sphere
surface.

Let us investigate the problem (2.1)-(2.9) and (4.1)
by the method of matched asymptotic expansions in
small Peclet numbers. Conditions (3.2} are assumed to
be fulfilled. Then, similar to [1], the inner and outer
regions are determined as Q, = {1 <r < 0(c™*)} and
Q. = {0c™) < r} (“contracted” coordinate p = er).

Similarly to [1] and [12], it can be shown that in the
case of translational Stokesian flow around a sphere,
equation (4.1), the temperature and concentration
distributions over the inner boundary of the outer
regionQ_ (i.e.atr ~ ¢~ !)can be presented in the form
m=1,..., M)

r=0@"",T=4¥P, P, ..

4.1)

s Pag)
-1 1 1 2 2
x 4r7!+ 5 Po(cos8~1) ~ 7 PSInPo+O(P) .

r=00E"), cp = Du(Po Py .... Ppy)

1 1
x {r“ + 5 Pufcos0-1) ~ -Z-PilnP,,,-!-O(Pi)}-

4.2)

Here, just as in the case of a shear flow (see Section
3), ¥ and @, are unknown functions determined in the
course of the problem solution.

In the inner region Q,, the temperature and con-
centration distributions, as well as the temperature
field inside a particle, are sought in the form

T = T+ P, T™ 4+ PEInP,T?® + O(P2),
t =% + PtV 4 PiinPyt® + O(P3),
Cm = + Pncty + PLInP,c? + O(PL).

4.3)

Substitution of equation (4.3) into equations
(2.1)-(2.3), with account of equation (3.2), and sub-
sequent separation of terms at the same ‘powers’ of the
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small parameter ¢ yield the following equations for the
functions c®, T%® and t®

Ac® =0, AT® =0, Af® = ¢;

At =0 (k=0,2),

1 o 'y
(1) e
Aon’ = O im0, 0)
-1
ATY = ¢ 1 M 4.4

°rZsinf  o(r, )
(o, =const;m=0,1,.., M).

In deriving the second group of equations (4.4) (at k
= 1),ithas been taken into account that the zero terms
of inner expansion (at k = 0) depend only on the radial
coordinate r and are determined by the binomial of the
form A + Br~%,

Now, employing the mean-value operator (3.6),
taking into account the equality {cos 8> = Oand using
the same sort of reasoning as with the case of a shear
flow, we obtain, for determining the mean Sherwood
and Nusseit numbers, the same algebraic system of
equations (3.11)and (3.12), where the parameters Sh,, .
and Nu_ are determined, according to Acrivos and
Taylor [1], as

1

1
Shnz = 1+ 5Py + PAINP, + O(P2),

2 “.5)

1 1
Nu, =1+ EPO + Epg InP, + O(PZ).

It should be noted that at small Peclet numbers,
equations (3.2), in the general case of an arbitrary
incompressible (both viscous and non-viscous) fluid
flow past a sphere, by virtue of the fact that the zero
term of the inner expansion is independent of the type
of flow and depends on the radial coordinate r alone,
the system (3.11)and (3.12) provides a correct result for
mean Sherwood and Nusselt numbers at least for the
first two terms of the corresponding asymptotic expan-
sion. In this case the parameters Sh, . and Nu_
correspond to a purely diffusional (thermal) mode of
reaction on the sphere surface under the same flow
conditions.

In the case of an isothermal reaction, which cor-
respondsto k,, = 0,m = 1,..., M, the mean Sherwood
numbers are determined from the solution of the
system of equations (3.11) at Nu = 0. The results
reported in [12] can be obtained by solving the first of
equations (3.11) and (4d.5)at M = 1, f, = kf(c).

5. EXAMPLES OF ISOTHERMAL SURFACE
REACTIONS
In the solution of specific problems, the system (3.11)
and (3.12) can be very conveniently used to analyze the
dependence of the mean Sherwood and Nusselt num-
bers on the reaction kinetics, with the parameters Sh,,,
and Nu_, for the shear and translational flows being
determined from formula (3.13) and (4.5), respectively.
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Now, we shall consider several simple types of chemi-
cal reactions occurring on the particle surface.

As is conventional for Frank-Kamenetsky’s chemi-
cal kinetics [16], the components of the reacting
substance will be traditionally denoted by letters A, B,
C, ... and so on, while the concentrations of reagents
will be labelled by letters instead of numerals (c,, ¢g, - . .
and so on); in the presence of one reacting component
in the flow the subscripts on concentration and other
parameters are omitted.

Surface reaction of an arbitrary order M = 1
For the k-order reaction the surface reaction rate,

equation (2.9), is determined by the formula
F(c*) = koc** (k> 0). (5.1)

In this case the system (3.11) is reduced to one
equation for determining the mean Sherwood number

ak Sh ¥
Sh=-10cx1{1 - .
D - (1 Sh,>

(5.2

For a translational flow, the substitution of ex-
pression for Sh_ (4.5) with subsequent solution of
equation (5.2) (by series expansion in small parameter,
i.c. Peclet number) for Sh yields the result obtained in
[12]. 1t should be noted, however, that for practical
calculations it is more convenient to use directly
equations (5.2) and (4.5).

For a shear flow, relation (3.13) should be used in
equation (5.2).

Equation (5.2)is easily resolved explicitly at x = 1/2,
t and 2. Thus, for a shear flow, equations (3.1} and
(3.13), at k = 1 we obtain

Sh=g(l ~ag P'?)"" + o(P*?),

=1{1 D\ 5.3
g—(m)-“

At kg — oo (g — 1), which corresponds to a dif-
fusional mode of reaction, equation (5.3) yields the
result obtained by Acrivos [8].

In the case of translational Stokes flow, equations
(4.1)and (4.5),at k = 1 equation (5.2) provides the first
three terms of expansion that have been obtained by
Taylor [11] and by Gupalo and Ryazantsev [9].

It follows from equation (5.2) that the mean Sher-
wood number decreases monotonically with an in-
crease in the reaction order (it is assumed that ¢,
=1) and increases monotonically with increase of
the rate constant k.

Reversible 1st-order reaction (A = B)
Constder an isothermal reversible surface 1st-order
reaction the rate of which is determined by

Fy = —Fy = knck — kyck.

(5.4)

Here k, and kg are the reaction rate constants.

Using relations (2.9) and (5.4), from the first two
equations of (3.11) we obtain for the mean Sherwood
numbers

A. D. POLYANIN

a ¢ ak ak -t
Shy = —(ky — B2 (1 + —2— + =B
A DA( NS B)( DaShy.  DpShy, ),
Shy = — (ca, Da/cg, Dg)Sha. (5.5)

Irreversible 2nd-order reaction (A + B — C)
For an irreversible 2nd-order surface reaction oc-

curring at the rate
Fo=Fg=kycket,

(5.6)

the system (3.11) yields the following values for the
mean Sherwood numbers

1
Sh, = iShAf A+s+p
~[s* +2s(1 + p) + (1 = p?]' 2}, (5.7)
Shy = cayDa Shy. s = DyShy , p= CpDpShg., ‘
g, Dy akocy , CaxDaShy .

Successive stepwise Lst-order reaction A > B — C
kn Ky

Consider the following reaction occurring on the
surface

Fpo=kack, Fg = —kuck + kgch, Fo = —~kycf, (5.8)

in which both stages are the lst-order reactions.
We shall assume for simplicity that the concentration
of component A far from the particle is equal to unity,
while the concentrations of the components B and C
are zero, i€. ¢, = I, ¢, = 0,¢c. = 0.

By the use of equations (3.14) we obtain the integral
mass flux of the final product of reaction C to the
particle surface

o K\Kyls,
¢ (Ka+1py NKg+1g,)
K,I
Ky p=4natk, o1, = 242
AB A.B (A KA _+_ IAJ
Iy = - KA1A1181 . (5.9)
(Kp + 10 K + Iy,

Adsorption occurring by the Langmuir kinetics

When the adsorption rate on the particle surface is
determined by the Langmuir isotherm, we have [16]
C*

= ko —— = ) .
F S ay» (b = constant) (5.10)

Equations (2.9), (3.11) and (5.10) yield the following
expression for the mean Sherwood number on the
particle surface

1 ak 12
Sh== —(d- o
h ZSh‘* {d (d 4cXDShX> }

b ak
d=1+ — o .
t e T DSk,

(5.11)
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6. NONISOTHERMAL SURFACE REACTION OCCURRING
BY THE ARRHENIUS LAW
Consider now a nonisothermal chemical 1st-order
reaction (in the presence of one reacting component in
the flow M = 1), which occurs by the Arrhenius law on
the sphere surface. In this case the surface reaction rate
is determined by [16]

F = koc* exp(—E/RT*).

Here E is the activation energy, R is the universal gas
constant, k, the reaction rate constant.

The system of equations (3.11) and (3.12) is reduced
to the following equation for determination of the
mean Sherwood number

akq Sh Sh \!
=901 = — "
Sh D (1 Shg@)exp [ a)<l + Num) ],

(6.1)
w=ERT,)™, h=—h >0.

To simplify the analysis, equation (6.1) is rewritten

in the form of the system
g = kexp(—w/z)[1+k exp(—w/z)] !, (6.2)
q=1tgfz—1)z = 1+oq tgf=07"), (6.3)

q = Sh/Sh, k = ako(DSh_)%, ¢ = hSh /Nu.,

Assuming now the parameter k to be fixed, let us
investigate the number of roots of equation (6.1)
depending on variations of the parameters w,
o €[0, + 0] (of the angle §, 0 < # < n/2). The num-
ber of roots of equation (6.1) is determined by the
number of intercepts of the straight line (6.3), that
passes at the inclination angle § to the axis z on the
plane z, q through the point (1,0), with the curve (6.2)
(Fig. 1). Depending on the magnitude of the parameter
w the following situations are here possible: (1) at any
o €[0, o] the set of equations (6.2) and (6.3) has the
single root ¢ = g(w, o); (2) there is an interval (¢, 7,)
within which at each 6,,< ¢ < ¢, the system (6.2) and
(6.3) has three roots, while at the end points of the
interval6 = g,(n = 1, 2)it has two roots; in this case,
for each ¢ outside thisinterval 0 <o < o,0rc; <o
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Fi1G. 1. Qualitative behaviour of the curve (6.2) on the z, q

plane; straight line 1 is the asymptote (6.2)at z — co. Points B

and Q correspond to the points of tangency of the straight line

(6.3) with the curve (6.2); the domain of the values of

parameter f, for which there are three stationary modes of
reaction, is between lines 2 and 3.
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there corresponds the single root of equation (6.1); 8,
= arc tg o, ! (here and henceforth, whenever there are
several modes of reaction on the particle surface, the
problems of their stability are not investigated).

It can be shown that the locus of the points of
tangency of the straight line (6.3) with the curve (6.2)
[which corresponds to two roots of equation (6.1)] on
the wo plane is prescribed parametrically as

o(q) = (1-q)y*S7'(1), o(g) = q7'S7'(1),
y=In{kg ' -1)},
S(n) = S(g, k, n) = (1-nq)y — n. (6.4)

At @ — oo the limiting curve (6.4) has two branches
that recede to infinity, with the upper one being
asymptotic to the curve

s=k o lexpw (w— ) (6.5)
and the lower having the asymptote
(6.6)

where g, < k(k + 1)7! is the root of the equation
S(gq,, k. 1) = 0.

The curve (6.4) on the wo plane has a sharp peaked
singularity (wq, 6), Which is its absolute minimum and
is located on the hyperbola

INw,0)=00w—46 —4=0.

o=(q,"' —~No—2q," (0 x)

6.7)

It is specified by the value of the parameter g = ¢,
where g, is the root of the equation S(g,, k, 2) = 0.

The local behaviour of the curve (6.4) in the vicinity
of the singular point is prescribed by

1
o — 00 = tgy(@—wo) WZwo; tg7 =5q5" — 1,

wp = w(go) = 41 —g)1 —2g0)7",
0o = 0(qo) = qo ' — 2. (6.8)

Figure 2 shows qualitatively the curve (6.4) on the
wo plane. In the hatched region Q, located between the
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Fi1G. 2. Qualitative behaviour of the curve (6.4). Hatched

region corresponds to those values of the determining

parameters w and ¢ at which there are three modes of reaction

on the particle surface. Curves 1 and 2 correspond to the
asymptotes (6.5) and (6.6).
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two branches of the curve (6.4) (which are determined
by the ranges of the parameter g: 0 < g < ggand g, <
q < q,, respectively), at fixed w > w, the segment [(w)
= {0,(w) < 0 < 0,{w)} (solid line in Fig. 2) specifies
those values of ¢ at which equation (6.1) has three
roots.

It can be shown that dq,/0k > 0, dqe/0k > 0.
Therefore, with a change in the parameter k the whole
region Q = Q(k) undergoes deformation due to
equations (6.5)-(6.8) as follows: with an increasing
parameter k the singular point located on the hyper-
bola (6.7) moves downward and to the right, with the
angle of inclination y to the axis w becoming smaller;
the asymptotic curve (6.5), which corresponds to the
maximum possible values of the parameter ¢ comes
closer to the axis w in inverse proportion to k, while its
point of intersection with the axis w, still remaining on
the right-hand semi-plane, moves to the right of the
zero.

In Fig. 2, dashed lines I and H correspond to the
asymptotic curves (6.5) and (6.6); the arrows at the
boundary of the region show the direction of the points
of curve (6.4) into which they move with an increase in
the parameter k ; the arrows on the hyperbola I'(w, o)
= 0 show the direction of the singular point (wy, 04)
moving with an increase in the parameter k ; the arrows
on the axis w show the direction of the points of
intersection between the asymptote (6.6) and the axis @
with increasing k, the intersection point coordinate in
this case being always above 2.

It is seen from the system of equations (6.2)and (6.3)
that the following limiting relations are valid

6-+0,g->(1+k leo)y !,

6 %, g kik + )71 (6.9)

With decreasing particle or shear flow velocities the
mean Sherwood and Nusselt numbers, corresponding
to a purely diffusional mode of reaction, equations
(3.13) and (4.5), decrease. In this case, as follows from
equation (6.1), the point A, corresponding to a high-
temperature mode of reaction, moves to the left along
the curve (6.2) up to the point B (Fig. 1). On having
passed B, the high-temperature mode can no longer
exist, hence the point B “jumps over” from the upper
part of the curve to the lower one, to the point C, which
already corresponds to the low-temperature mode of
reaction on the particle surface.

7. INTERPOLATION FORMULA FOR MEAN SHERWOOD
NUMBERS AT ARBITRARY PECLET NUMBERS,
SOME CORRELATIONS

Comparison with the results [17] obtained for the
other limiting case of large Peclet numbers (it should
be noted that in the isothermal case at M = 1 equation
(3.11) coincides, to the accuracy of transformations,
with the interpolation equation (40) derived intuitively
in [17]), suggests the possibility of using the system
(3.11) and (3.12) as interpolation equations for approxi-
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mate determination of mean Sherwood and Nusselt
numbers within the whole range of Peclet numbers 0
< P, < 2 (atd « 1)in the presence of not very large
number of reagents in the flow and simple reaction
kinetics. Then, as the parameters Sh,, ., Nu_, entering
into the system of equations (3.11) and (3.12), one
should use the values of the mean Sherwood and
Nusselt numbers obtained by solving an auxiliary,
linear and much more simple, problem which cor-
responds to a purely diffusional mode of reaction on
the sphere surface (m = 0, 1, ..., M)

Shy = = 0éufOr> |, =1y Nu = — 8T/or|, .y,

Aé,, = P, (wV),; r— =, ¢,—0;

r=1,¢,=1,3¢=T (7.1)

At present there is a fairly large number of solutions
of the problem (7.1) obtained for different patterns of
flow by numerical, analytical and approximate
methods.

Atlarge Peclet numbers (in the diffusional boundary
layer approximation) for an isothermal reaction of
order k = 1/2, 1, 2 the testing for applicability of
equation (5.2) was carried out for the whole range of
the parameter K = ak D~ 'c*~ ! by comparing its root
Sh with the accurate results obtained for the Sherwood
number by numerical integration of respective integral
equations in the case of a translational Stokesian flow
around a sphere [18], circular cylinder [19], droplet
and bubble [20]. In these cases, the characteristic
length scale is expressed in terms of the radii of the
sphere, cylinder and droplet, and the characteristic
velocity, by that of the flow at infinity U _ (for a droplet
and bubble the quantity U (B + 1)~ ! has been taken
as the characteristic velocity, where f is the ratio of
dynamic viscosities of the droplet and surrounding
liquid; B = Ocorresponds to a gas bubble). The results
of comparison between the accurate and approximate
values of the Sherwood number show that the maxi-
mum deviation of the root of equation (5.2) from the
mean Sherwood number [18-20] is observed at K =
1.5-5.0 and does not exceed 7-99/.

The adequacy of the approximate equation (5.2) for
application at intermediate Peclet and Reynolds num-
bers in translational flow past a sphere has been
checked by comparison with the known results of
numerical solution of a respective problem for the Ist-
order reaction k = 1 on the sphere surface at P = 10,
20 and 50. It follows from Table 13 presented in [21]
that the use of equation (5.2) yields very good resulits,
with the error not exceeding 1.5%.

The above comparison provides good reason to
believe that in the case of isothermal reactions, in order
to approximately determine mean Sherwood numbers
within the whole range of Peclet numbers, it is a sound
plan to use the interpolation system of equations (3.11)
and (3.12) provided there is a small number of reagents
in the flow and the kinetics of reactions is simple
enough (with the only one mode of reaction on the
sphere surface).
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Some generalizations for the case of an arbitrarily
shaped particle

It can be shown that for an arbitrarily shaped
particle freely suspended in a shear flow (G;;) in the
case of isothermal reaction of the first order k = 1
[equation (5.1)] the following formula is valid for the
mean Sherwood number

Sh

= 172 2¢p2
S, = |+ aShoP'? + o2SHEP

+ 0(P*?), a=aGy). (12)

Here, the mean Sherwood number Sh, corresponds
to mass transfer between a reacting particle (at F =
koc*)and a stationary medium (i.e. at P = 0), while the
coefficient o« and the Peclet number P are determined
according to [7] see also Section 3, equation (3.3)].

Equation (7.2) is derived in the same manner as has
been used in [8] to investigate the diffusional mode of
reaction (k, — o) and just as a corresponding
extension of work [2] was made in [10] to a trans-
lational flow. Equation (7.2)is a natural generalization
of the results of work [8]. In the case of a solid sphere,
Sh, = g, equation (7.2) coincides with (5.3) accurate to
o(p3?),

Consider now the case of an arbitrary kinetics of
surface chemical reaction. For simplicity, let us restrict
ourselves to the study of the case of an isothermal
reaction with the presence in the flow of one reacting
component (M = 1);itisalso assumed that thereis the
only one mode of surface reaction within the whole
range of governing parameters.

Having chosen the radius of a volumetrically equiva-
lent sphere a,, for the characteristic particle dimension
we obtain the relation

A = Sh™f(Sh/Sh,). (1.3)

By virtue of (3.11), A = 1 for the sphere; in the
general case A = A (f, 7, P), where 7 is the shape
parameter. At P — 0, A — Shy ' f(Sho/Shy ), where
Shy, is the mean Sherwood number for a fixed particle
at the prescribed kinetics f, while Shy, is for a fixed
particle reacting in a purely diffusional mode. Taking
into account this limiting relation and assuming that at
small Peclet numbers for an arbitrarily shaped par-
ticle, just as for a sphere, one can restrict oneself to the
asymptotic expansion of A at P - 0 on the RHS of
equation (7.3), we obtain the following equation to
determine the mean Sherwood number Sh

Sh f(ShiSh,)
—_—— 74
Sho — J (ShajSho,) 74

This equation allows an easy calculation of the
Sherwood number for a moving reacting particle once
the parameters Sh_, Shy, Shq,, are known. Thus, for
the 1st-order reaction (F = kqc*) equation (7.4) yields

1_ 1 + 1 1 15)
Sk~ Shy T SHL T SheL :
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In order to check the above calculation procedure
for the convective mass transfer of droplets and
arbitrarily shaped particles let us use an analytical
solution of the problem for the 1st-order surface
reaction obtained in [10] for a translational Stokesian
flow by the method of matched asymptotic expansions
in small Peclet number

1 1
Sh = Shy + 5 ShEP + 5 ESh3P? InP + O(P).
(7.6)

Here ¢ is the magnitude of the dimensionless hy-
drodynamic resistance of particle at prescribed orien-
tation in the flow (it is equal to the dimensional force
related to the Stokesian resistance of the sphere of
radius a,, ie. 6nuU_qa,.; p is the dynamic fluid
viscosity).

The use of equation (7.6) will obviously yield,
accurate to the terms of order P2, that

1 1 1

1
= __P_ (PP
Sk sh 2f T3¢

1 1 1
= Shy T Sh.  Shy.’
which coincides exactly with equation (7.5).

It can be shown in a similar way that equation (7.2)
obtained at small Peclet numbers for an arbitrary
shear flow past an arbitrarily shaped particle can be
expressed in the form of equation (7.5). Bearing this in
mind and taking into account that at any f equation
(7.4)at P = Oleads to an accurate result for the particle
of any shape, while for a spherical particle it gives
several first terms of asymptotic expansion for the
mean Sherwood number at small Peclet numbers and
can be successfully used also for approximate de-
termination of Sh at any P’s (0 < P < 0), it is thus to
be expected that equation (7.4) can also be applied for
approximate determination of the mean Sherwood
number on an arbitrarily shaped particle surface
within the whole range of Peclet numbers at simple
enough kinetics of surface reaction.

It should be noted that equation (7.4) can be written
in the form of equation (3.11) on having chosen
a,[A]; 2o as the characteristic length scale.

General boundary conditions

In some problems on heat and mass transfer be-
tween particles (droplets) and the flow (2.1)-(2.9) one
can encounter other boundary conditions than those
given by equations (2.6) and (2.7). Thus, for vapour
adsorption on the liquid droplet surface, being in the
saturation state, the following boundary condition is
used:r = 1,¢* = dT* + b(dand b = constants)[22].

It can be shown that at small Peclet numbers
equation (3.2), in the general case of the boundary
conditions on the particle surface m=1, 2, ...,
M+1)
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the mean Sherwood and Nusselt numbers in the
problem (2.1)-(2.5),(2.8) and (2.9) are determined from
solution of the system

r= l’fm (Ts t’ c]s»-w CM;

1.7)

f (N Nu Sh, Shy,
"\Nu, Nu, Sh,, 7 Shy.'
~Nu, 0, —=Shy, .., —=Shy | =0, (7.8)

where the parameters Nu_ and Sh,,  for the shear and
translational Stokesian flow past a sphere are pre-
scribed by equations (3.13) and (4.5), respectively.
The system (7.8) is also valid for a purely external
problem (2.1), (2.2), (2.4), (7.7) and (2.9), in which the
functions f,, are independent of t and 0t/dr. In this case,
for a translational Stokesian flow past a spherical
droplet the governing parameters occurring in the
system (7.8) [or in (3.11) and (3.12)] are of the form [2]

1 12+ 38

= — — P2 2’

Shy o 1+2P,,,+6 T+ B > InP, + O(P;)
1 12+3

Nu, =1 +§Po+g i +;PélnP0+O(Po)2.

The inverse problem

The results obtained make it possible to study the
inverse problem of mass transfer of reacting particles in
the flow and allow determination of the surface
chemical reaction rate from the known integral fluxes.
Thus, in the case of an isothermal reaction at M = 1
the experimental data on Sh at various Pe numbers (i.e.
at various velocities of flow past the particle, U ) can
be used to construct, by equation (3.11), the points
with the coordinates f = Sh and x = Sh/Sh,
(experimental values of Sh, are well known see, e.g.
[21]), that determine the relation f = f(x) which is
sought for.
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REACTION CHIMIQUE NON ISOTHERME A LA SURFACE DE LA PARTICULE DANS UN
ECOULEMENT LAMINAIRE

Résumé—On considére la convection stationnaire pour une sphére conductrice de la chaleur en réaction
dans un écoulement laminaire, paralléle, avec une réaction chimique non isotherme sur sa surface avec une
vitesse dépendant arbitrairement de la température et des concentrations.

On montre que pour les flux globaux de chaleur et de masse des composants (nombres moyens de Nusselt
Nu et de Sherwood Sh,) 4 déterminer pour les petits nombres de Péclet, il suffit de résoudre le systéme
d’équations algébriques universel (transcendant):

Shy = Nu  Sh, ShM)
"I \Nuy Sk, Shyl )
M
Nu= Y h,Sh,,

m=1
qui est notablement plus simple que le systéme initial d'équations aux dérivées partielles. Le systéme suggéré
permet d’obtenir pour les nombres de Sherwood et de Nusselt les quatre premiers (écoulement 4 cisaillement)
et les trois premiers termes (écoulement de transition) du développement asymptotique en petits nombres de
Péclet.

On étudie une réaction irréversible, isotherme du seconde ordre et une réaction du premier ordre 4
échelons successifs. On a considéré en détail le cas d’une réaction en surface non isotherme qui suit la loi
d’Arrhenius avec un composant réactant présent dans 'écoulement. On analyse Padsorption sur la surface de
la particule, gouvernée par la cinétique de Langmuir.

En comparaison avec des résultats antérieurs pour des réactions isothermes & des nombres de Péclet
modérés ou grands, on montre qu'avec un choix judicieux des paramétres Sh,,,,, (Nu ), le systéme algébrique
proposé peut étre appliqué avec succés 4 la détermination approchée des nombres de Sherwood moyens dans
tout le domaine des nombres de Péclet.

Les résultats obtenus permettent I'étude du probléme inverse de transfert de chaleur et de masse pour des
particules en réaction dans I'écoulement, permettent par exemple de déterminer explicitement la dépendance
de la vi‘csse de réaction en surface aux concentrations a partir des flux globaux que I'on peut déterminer

expérimentalement.

NICHTISOTHERME CHEMISCHE REAKTION AN EINER TEILCHENOBERFLACHE BEI
LAMINARER STROMUNG

Zusammenfassung—Der Bericht befalit sich mit der stationdren konvektiven. Diffusion an eine wirmeleit-
ende, chemisch reagierende Kugel in einer laminaren Translations- und Scherstrémung bei nichtisothermer
chemischer Reaktion an ihrer Oberfliche, deren Geschwindigkeit von Temperatur und Konzentration
abhingt. Es wird gezeigt, daB es fiir die integralen Wirme- und Massenstréme der reagierenden
Komponenten an ein Teilchen (d. h. mittlere Nusselt-Zahl Nu und mittlere Sherwood-Zahl Sh,,), die fiir
kleine Peclet-Zahlen bestimmt werden sollen, geniigt, das folgende universelle algebraische (transzendente)
Differentialgleichungssystem zu 13sen

Nu  Sh, Sh,,
Shy = ful =—, P s
" f"* (Nuzr Shlm Shm:c)
Nu= Y h,Shy,
m=1

das wesentlich einfacher ist als das urspriingliche System partieller Differentialgleichungen. Das vorgeschla-
gene Gleichungssystem ermdglicht es, fiir die Sherwood-Zahl und die Nusselt-Zahl die ersten vier Terme
{Scherstromung) und die ersten drei Terme {Lingsstrémung) der entsprechenden asymptotischen Reihe-
nentwicklung bei kleinen Peclet-Zahlen zu bestimmen. Es wurden eine irreversible isotherme Reaktion
zweiter Ordnung und eine sukzessive, schrittweise Reaktion erster Ordnung untersucht. Der Fall der
nichtisothermen Reaktion an der Oberfléiche, die nach dem Arrhenius-Gesetz abliuft, mit einer reagierenden
Komponente in der Stromung, wurde im Detail analysiert. Die Adsorption an der Teilchenoberfliiche, deren
Geschwindigkeit von der Langmuir-Kinetik bestimmt wird, wird untersucht. Auf der Grundlage eines
Vergleichs mit fritheren Ergebnissen fiir isotherme Reaktionen bei mittleren und groBen Peclet-Zahlen wird
gezeigt, daB mit einer geeigneten Vorgabe der bestimmenden Parameter Sk, (Nu_) das vorgeschlagene
algebraische Gleichungssystem auch erfolgreich fiir die niherungsweise Bestimmung der mittleren
Sherwood-Zahlen innerhalb des genannten Peclet-Zahlenbereichs angewandt werden kann. Die erhaltenen
Ergebnisse erméglichen die Untersuchung der inversen Wirme- und Stoffiibergangsprobleme von chemisch
reagierenden Teilchen in einer Stromung, d.h. sie ermdglichen es, anhand vorhandener integraler Strome, die
experimentell bestimmt werden kdnnen, die Abhingigkeit der Konzentrationen von der Oberflichenreak-
tions-Geschwindigkeit explizit zu bestimmen.
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O HEU30TEPMUYECKOW XMMHWUECKON PEAKLIMM HA MOBEPXHOCTU UYACTHULIbI
B TAMMWHAPHOM TIOTOKE

Annotauns — PaccMaTpuBaeTcs cTallMOHapHas KOHBEKTHBHasA AUGPY3Hs X TeNIONpoBOIHON pearu-
pyrolue# chepe, o6TekaeMoil TaMHHAPHBIM TIOCTYNIATEIBHBIM U CABUTOBHIM MOTOKOM NPH NPOTEKAHMH
Ha €€ TOBEPXHOCTH HEM3OTEPMMYECKOH XHMHYECKOH peakuuH, CKOPOCTb KOTOPOiH NPOH3BOJbLHBIM
00pa3oM 3aBHCHUT OT TEMMEPATYPbl ¥ KOHHEHTPaLHH.

[ToxazaHo, yTo npu Mmanbix uuciax [lekje aJs OnpedeneHHs HMHTErpajbHbIX MPUTOKOB Temia M
BEILECTBA PealHPYIOLIMX KOMIIOHEHT K HacTHue (T. €. Ui onpeleseHus cpeaunx yucen Hyccenbra Nu
n Hepsyna Sh,) 1OCTaTOYHO PEIINTL CNENYIOLIYIO YHHBEPCAIbHYIO anrebpanyeckyio (TpaHCUEHIEHT-
HYIO) CHCTEMY

Nu  Sh, Sh,,
Shw=fol = o v |
" fm<NuI Shluo Shmac)

Nu= Y. hySh,,

m=1

KOTOpasi CYLIECTBEHHO NPOLUE MCXOMHON CHCTEMBb! YpaBHEHWH B 4acCTHbIX Npou3BoHbIX. [1pemnara-
eMas CHCTeMa TO3BONSET NOJYYHTh B CJIy4ae CABUrOBOrO IIOTOKA YETHIPE, 4 B CIIyYae MOCTYNATENBHOrO
— TPH NEPBbIX YICHa COOTBETCTBYIOLUETO ACHMNTOTHYECKOTO PA3JIOKECHHUA NO MajbiM 4uciam Tlexse
s uucen Mlepsyna u HyccensbTa.

HccnenoBana HeoOpaTHMas M30TEPMHYECKas PEAKIHs BTOPOTO MOPAAKA W NOCIEAOBaTe/bHAs CTy-
NeHYaTas peakuus nepeoro nopsaka. [loxpobno paccMoTpeH ciy4ail HeM30TEpMHYECKOH NOBEPXHOCT-
HOM XMMMYECKOH peakiud, NpoTexalolieit No 3akoHy ApeHMyca NpH HAJHYHH B MOTOKE ORHOM
pearupyollelf KOMNOHEHTbl. AHAaH3HpYeTCH ancopOuUHs Ha TOBEPXHOCTH YaCTHLbI, CKOPOCTh KOTOPOii
ONpENENAETCH JAHIMIOPOBCKOH KMHETHKOM.

Ha ocHOBe CONOCTAaBICHUA C PaHee M3BECTHLIMH Pe3ybTATaAMHM I H30TEPMHUECKMX peakuuii mpu
yMepeHHbIX U 6obwuxX uyscnax Ilekne mokasaHo, 4TO MPH COOTBETCTBYIOLIEM BHIGOpE ONpeaensIOLINX
napaMeTpos Sh,,.(Nu,), nonydeHHas ajqrebpauueckas CHCTEMa MOXET OBIThb ¢ YCIIEXOM HCNOJIb30BaHA
TaKxXe 118 npHOIHKEHHOro onpeneieHus cpeanux yucen lllepyna Bo BceMm auanaszose yucen Ilexne.

ITonyyeHHbIE Pe3yabTaThl JaHOT BO3MOXKHOCTb HCCNIEAOBATh OOpaTHYIO 3aa4y O MaccoTenoooMeHe
pearupylollinX YacTHIl B NOTOKE — T. €. IO3BONAIOT B ABHOM BHJE ONPEIENHTL 3aBUCHMOCTL CKOPOCTH
TIOBEPXHOCTHON XHMHYECKOH PEakUHH OT KOHLEHTPALMil MO M3BECTHBIM HHTETPalbHbLIM MOTOKAaM,

KOTOpBIE MOTYT ObITh ONpPENENeHbl H3 IKCIEPUMEHTa.



