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Abstract-The paper is concerned with the steady-state convective diffusion to a heat-conducting reacting 
sphere in a laminar translational and shear flow, with a nonisothermal chemical reaction proceeding on its 
surface at the rate arbitrarily dependent on temperature and concentrations. 

It is shown that for the integral heat and mass fluxes of reacting components to a particle (i.e. mean Nusselt, 
Nu, and Sherwood, Sh,, numbers) to be determined at small Peclet numbers, it suffices to solve the following 
universal algebraic (transcendental) system of equations 

Sh,=f, ,..., %T- 
Shy, 

, 

Nu = $ h, Sh,, 
m=t 

which is appreciably simpler than the initial system of partial differential equations. The system suggested 
makes it possible to obtain for the Sherwood and Nusseh numbers the first four (shear flow), and the first 
three (translational flow), terms of the corresponding asymptotic expansion in small Peclet numbers. 

An irreversible isothermal 2nd-order reaction and a successive stepwise lst-order reaction have been 
studied. The case of nonisothermal surface reaction, which proceeds following the Arrhenius law with one 
reacting component present in the flow, has been studied in detail. Adsorption on the particle surface, the rate 
of which is governed by the Langmuir kinetics, is analyzed. 

Based on comparison with the earlier results for isothermal reactions at moderate and large Peclet 
numbers, it is shown that with a suitable choice of the governing parameters Sh,,(Nu,) the suggested 
algebraic system can also be successfully applied for approximate determination of the mean Sherwood 
numbers within the whole range of Peclet numbers. 

The results obtained enable investigation of the inverse mass and heat transfer problem for reacting 
particles in the flow, i.e. allow one to explicitly determine the dependence of the surface reaction rate on 

concentrations from the available integral fluxes that can be determined experimentally. 

NOMENCLATURE 

particle radius; 
radius of a volumetrically equivalent 
sphere ; 
dimensionless concentration of mth 
component ; 
dimensional concentration ; 
concentration at infinity; 
solution of auxiliary problem (7.1); 
diffusivity of the mth species in mixture; 
activation energy; 
dimensional surface reaction rates; 
dimensionless surface reaction rates; 

v), dimensional (dimensionless) elements of 
the matrix of shear factors; 
parameter defined in equation (5.3); 
dimensional heat of mth reaction ; 
dimensionless heat of mth reaction ; 
integral mass flux of the mth reagent to the 
particle surface ; 
integral mass flux in diffusional mode of 
reaction ; 
integral heat flux to a particle; 
parameter defined in equation (3.15); 
parameters defined in equation (5.9); 

k, 
k 
,q’ 

dimensionless reaction rate constant ; 
dimensional reaction rate constant ; 
differential operator defined in equation 

(3.7); 
M, number of reagents participating in 

reaction ; 
m, 
Nu, 
Nu,, 

ordinal number of reagent; 
mean Nusselt number; 
mean Nusselt number in diffusional mode 
of reaction ; 

P In9 diffusional Peclet numbers (1 I m I M); 

PO, heat transfer Peclet number; 

PY parameter defined in equation (5.7); 

Q In, parameters occurring in equation (3.2); 

R, universal gas constant ; 
r, 0, 4, spherical coordinate system moving with 

particle ; 
S, function defined in equation (6.4); 

S” surface of sphere with radius r; 

She, mean Sherwood number for a particle at 
rest; 

Sh,, mean Sherwood number for diffusional 
mode of reaction ; 

Sk,,, mean Sherwood number of the mth com- 
ponents of reacting substance ; 
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s, 

7-9 

T*, 

7-7 

t, 

t* 

u: 
u Z) 

4 

ui* 

xi, 

Z, 

parameter defined in equation (5.7); 
dimensionless temperature in liquid (gas) 
flow ; 
dimensional temperature in flow ; 
liquid (gas) temperature at infinity; 
dimensionless temperature inside a 
particle ; 
dimensional temperature inside a particle ; 
characteristic flow velocity ; 
translational flow velocity at infinity ; 
liquid velocity vector ; 
liquid velocity components in Cartesian 
coordinate system; 
Cartesian coordinate system moving with a 
particle (i = 1, 2, 3); 
parameter defined in equation (6.3). 

Greek symbols 
numerical factor occurring in equations 

(3.3); 
parameters occurring in equations (4.4); 
ratio between dynamic viscosities of a 
droplet and surrounding liquid; parameter 
defined in equations (6.3); 
hyperbola (6.7); 
parameter defined in equations (6.8); 
Laplace operator ; 
ratio between thermal conductivities of 
particle and liquid (gas); 
small parameter introduced into equation 

(3.2); 
fundamental solutions of equations for 
temperature and concentration distri- 
butions in the external flow region R, ; 
order of reaction ; 
shape factor (A = 1 for a sphere); 
thermal conductivity of a particle ; 
thermal conductivity of liquid (gas); 
dynamic viscosity of liquid ; 
dimensionless resistance force of a particle 
(droplet); 
coefficients occurring in equations (3.5); 
‘contracted’ coordinate; 
parameter defined in equation (6.3); 
unknown functions, to be determined, that 
enter into relations (3.3) and (4.2); 
thermal diffusivity ; 
unknown function entering into relations 
(3.3) and (4.2); 
stream function ; 
internal flow region ; 
external region ; 
dimensionless characteristic parameter de- 
fined in equation (6.1). 

1. INTRODUCTION 

FOR THE first time the problem of heat and mass 
transfer of a sphere in a steady-state Stokes flow at 

small Peclet numbers has been studied by Acrivos and 
Taylor [l] using the method of matched asymptotic 
expansions. Concentration far from the particle and on 
its surface was assumed to be constant. The first five 
terms of asymptotic expansion have been obtained for 
the mean Sherwood number. Brenner [2] has extended 
this problem to the case of an arbitrarily shaped 
particle; a 3-term expansion in Peclet numbers has 
been obtained for the mean Sherwood number. Rim- 
mer [3, 41 has considered a similar problem for a 
sphere using the results of Proudman and Pearson [5] 
for the liquid velocity field which were obtained by the 
method of matched asymptotic expansions in small 
Reynolds number. 

Frankel and Acrivos [6] have considered convective 
diffusion to a sphere freely suspended in a simple shear 
flow. A 2-term expansion has been obtained for the 
mean Sherwood number. Batchelor [7] has extended 
these results to the case of a particle of any shape freely 
suspended in an arbitrary linear flow. On the basis of 
Batchelor’s results [7], Acrivos [8] has obtained for a 
sphere the first four, and for an arbitrarily shaped 
particle the first three, terms of the corresponding 
asymptotic expansion. 

Convective diffusion to a sphere and an arbitrarily 
shaped particle in a uniform translational flow with 
an isothermal lst-order reaction occurring on its 
surface was considered by Gupalo and Ryazantsev [9] 
and Gupalo, Ryazantsev and Syskov [lo]. Taylor [ 1 l] 
has studied mass transfer of a sphere with chemical 
reactions of the first and second orders occurring on its 
surface. The case of an arbitrary kinetics of the surface 
reaction on a sphere in Stokes flow was considered by 
Gupalo et al. [12]. Gupalo, Ryazantsev and Chalyuk 
[ 133 have determined the temperature field inside and 
outside a heat-conducting particle in the case of 
complete absorption of reagent by the particle surface. 

2. STATEMENT OF THE PROBLEM 

Consideration is given to the analysis of convective 
diffusion to a reacting sphere in a laminar translational 
and shear flow with a nonisothermal chemical reaction 
occurring on its surface at the rate arbitrarily de- 
pendent on temperature and concentrations. The 
particle is assumed to be heat-conducting, and the 
reacting components are thought to be at rather small 
concentrations so that the presence of surface reaction 
does not influence the flow and particle parameters. 
The effect of heat and pressure diffusion is also left out 
of account. 

The dimensionless convective diffusion and heat 
conduction equations as well as the boundary con- 
ditions specifying uniformity of temperature and con- 
centrations far from the particle, temperature con- 
tinuity, ‘reaction law’ and heat balance on the particle 
surface, as well as temperature boundedness at the 
particle centre are of the form 
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AC, = P,(uV)c,, (1 < r < 30) m = 1, . . ., M, 

(2.1) 

AT = P,(uV)T, (1 < r < r;o), 

Aht=O,(O<r<l), 

r--t oo,c,+O, T+O, 

r=l,T=t, 

r = 1, -&Jar =f,(T, cl, . . . . c,), 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

r=l _T+~!!!= M 
’ ar ar m~l h,f,(T, ~1,. . c,), (2.7) 

r=O,(tl < ~0, (2.8) 

c* = ‘&,(1--c,), T* = T,(l-T), t* = T,(l-t), m 

cnm,HJ’m 
AT, ’ 

f,(T, cl, . . ., cM) = a(c,,D,)- ‘F,(T*, CT, . . ., cc). 

(2.9) 

For the time being, it is assumed that c,, # 0 (m = 1, 
. . ., M); henceforth these restrictions will be removed. 

Equations (2.1) and (2.2) and boundary conditions 
(2.6)and (2.7) for the case of a non-conducting particle 
can be found in [14]. 

3. SHEAR FLOW 

In the case of an arbitrary shear flow, the liquid 
velocity distribution far from a particle will have the 
following form in dimensionless variables 

r + co, ui + Gijxj, Gii = 0 (i, j = 1, 2, 3), 

(Gij = G;G-‘, G = myx IG$, U = aG). 

Here and subsequently, the summation is carried 
out over the repeated indices i and j, G; are the 
elements of the matrix of shear factors, ui are the 
components of liquid velocities in the Cartesian system 
of coordinates xi(i = 1, 2, 3). 

In particular, in the axisymmetric case (G,, = G,, 
= l/2, G,, = - 1 and Gij = 0 at i # j) the liquid 
velocity distribution, which satisfies the above con- 
ditions at infinity, is determined, in Stokesian approxi- 
mation, by the stream function 

+=i r”-i+ir-2 ( > sin’ 0 cos 8, 

(uV)w = 1 a(W $) 
rZme 

(3.1) k=O 

3 

Here a(w, $)/a(r, 0) is the Jacobian of the functions w c, = c P”,‘” c’,“) + o(Pi”)(m = 1, . . ., M), 
and $. k=O 

Let us examine the boundary-value problem 
(2.1)-(2.9) by the method of matched asymptotic 
expansions in small Peclet numbers. It is assumed that 

~0, P, = EQ,,,, Q, = O(l), m = 0, 1, . . ., M (3.2) 

and the entire flow region is divided into the inner, R, 

where the functions c!,!,), Tfk’ and t’” satisfy the 
equations 

AC’” = 0 ATck’ = 0 Attk’ m 1 

= 0 at k = 0, 1, 

= (1 5 r 2 O(E-112)},and theouter,R, = {O(E-“~) 
I r}, subregions (see, e.g. [8]). As usual, a ‘contracted 
coordinate, p = &l”r, is introduced in the outer region 
and the solution in each of the subregions is sought 
separately in the form of internal and external expan- 
sions. In constructing an asymptotic solution in the 
internal region, the boundary conditions on the par- 
ticle surface (2.5)-(2.7) are used, while in the outer 
region, the boundary conditions at infinity (2.4) are 
employed; the resulting unknown constants are de- 
termined by using the matching technique. 

The above situation (3.2) is typical of slow gas 
motions, where 0.5 5 D x-l 5 2.0 [lS]. 

Batchelor [7] and Acrivos [8] have shown that in 
the case of an arbitrary Stokesian shear flow past a 
particle, equations (3.1), the temperature and con- 
centration distributions in the outer region R, can be 
expressed by the fundamental solution of the 
equations 

Ap. [, = G,,~,&,@x,, pm = PLi2 r (m = 0, 1, . . ., M). 

Therefore, by virtue of the properties of c,[8], the 
temperature and concentration distributions at the 
inner boundary of the outer region R, (i.e. at r N 
E-“‘) can be presented as (m = 1, . . ., M) 

r = O(E-~~‘), T = Y(P,, P,, . . . . P,) 

x {r-l - aPA” + O(Pg)), 

r = O(E-‘~‘), c, = am(P,, P,, . . ., P,) 

X {r-l - aPA” + O(Pi)}. (3.3) 

Here a = a(Gij) is a numerical factor, while Y and CD, 
are the unknown functions which are determined in 
the course of the problem solution. A general ex- 
pression for determining the value of the parameter a 
has been obtained by Batchelor [7]. Thus, for an 
axisymmetrical case, equation (3.1), a = 0.399 [7], 
while for the case of a simple shear (one off-diagonal 
element of the matrix Gij is equal to unity and the 
remainder, to zero) a = 0.258 [6]. 

The inner temperature and concentration expansion 
in the region R,, as well as temperature distribution 
inside a particle involve the following representation 

T = i P:d2 TCk’ + o(P;‘~), 
k=O 

t = 5 py 6’) + o(I$y), 

(3.4) 
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zz _ a(L) r - 3 U.X. At’” = 0 I L) 

at k = 2, 3. (3.5) 

In deriving the second group of equations (3.5) at k 
= 2, 3 it has been taken into account that the first 
terms of the inner expansion (3.4) and (3.5) at k = 0, 1 
depend only on the radial coordinate r and are 
determined by the binomial of the form A + Br- ‘, 
where for each c$‘, Ttk) and tCk) (k = 0,l) there are their 
own constants A and B determined from the boundary 
conditions (2.5)-(2.8) and the condition of matching 
with the solution in the region Q, (3.3); in (3.5) the 
summation is carried out over the index i; &), o(k) = 
const. 

For the analysis of equations (3.5), let us use the 
formula 

to introduce the mean value operation, which has been 
used by Acrivos [8]. Here S, is the surface of the sphere 
with radius r. 

Note that the equality (w(r)) = w(r) holds for any 
functions w depending on the coordinate r alone. 

Integration of equation (3.5) over the surface of the 
sphere with radius r and account for the equality (uixi) 
= 0 [S] yield 

L(c$‘) = 0, L( 7-(Q) = 0, L( P’) = 0, 

L_f$p2$, k=0,1,2,3. (3.7) 

By virtue of (3.4) and (3.7), the following equations 
are obtained accurate to o(c3j2) for the complete mean 
values 

L(c,) = 0, L(T) = 0, L(t) = 0. (3.8) 

The solution of equations (3.8), which satisfies the 
condition of matching with the solution in the outer 
region R, (3.3), will, to the same order of accuracy, 
have the form 

(c,) = QJP,, P,, . . . . P,W)(r-’ - UP;‘), 

(T) = Y(P,, P,, .., P,)(r-’ - CtPh 2), 

(c) = Y(P,, P,, . . . . P,)(l - ctP$2). (3.9) 

Here the form of the expression for (t) is due to the 
boundary conditions (2.5) and (2.8). 

Since by virtue of equations (3.5) the c(,k), TCk) and tck) 
at k = 0,l depend only on the distance to the centre of 
the sphere r; then for any analytical function f the 
following formula will be valid accurate to o(?) 

(f(7-, Cl, .> CM)) =f(<T), <Cl), .1 (c&f>), (3.10) 

which is proved by direct verification with account for 
equation (3.4) and (3.6). 

The mean Sherwood and Nusselt numbers are 
determined from 

Averaging of the boundary conditions (2.6) and (2.7) 
and use of equations (3.9) and (3.10) will yield the 
following algebraic (transcendental) system of equa- 
tions to determine the mean Sherwood and Nusselt 
numbers 

m = 1, . . . . M, (3.11) 

Nu = E h,Sh,. (3.12) 
l?l=l 

Here, the last of the above equations has been obtained 
by substituting into the boundary condition (2.7) the 
expressions forf, from equation (2.6), while the values 

of Sh, m, Nu, correspond to purely diffusional (ther- 
mal) mode of reaction (which complies with the 
boundary conditions on the sphere surface r = 1, c, = 
1, T = 1) and have been obtained by Acrivos [S] 

Sh,, = 1 + aP$2 + a2 P, + a3 Pz2 

+ o(P;f;‘l) z (1 - ‘XPy-‘, 

Nu,, = 1 + crPAs2 + or2P, + u’P;‘~ 

+ o(Py) z (1 - .,;yl. (3.13) 

Hence, it is shown that in the case of the surface 
chemical reaction accompanied by heat release, in 
order to determine the integral heat and mass inflows 
of reacting components to the particle at small Peclet 
numbers, it is sufficient to solve the algebraic (transcen- 
dental) system of equations (3.11) and (3.12) which is 
much simpler than the initial system of partial differen- 
tial equations (2.1)-(2.9). 

It is seen from (3.11) and (3.12) that at small Peclet 
numbers the ratio between thermal conductivities of 
the particle and surrounding liquid does not influence 
the integral characteristics of the process. Variation of 
the parameter 6 [in the boundary condition (2.7)] 
leads only to redistribution of local thermal and 
diffusional fluxes over the sphere surface, with the 
respective total fluxes being unchanged. 

The system (3.11) and (3.12) can be written in 
dimensional form in terms of the integral fluxes 

I, = 4a a2F, [(TX -jJr$ 

(Ci= - &I 1...> [CMz - &)I, (3.14) 

M 
J = c H,Z, (m = 1, . . . . M), 

rn=l 

I, = 4~ aD,<&Ylar> I, = Ir J = 47~ al(dT*/dr) Ir= 1, 

I mm = 4naD,Sh,,, J, = 4xaA Nu,. (3.15) 
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Here I, and J are total fluxes of reacting substance and 
heat to the sphere surface; the expressions for Sh,, 
and Nu, are determined by equation (3.13). 

Equations (3.14) and (3.15) are more suitable than 
equation (3.11) and (3.12) in those cases when at least 
one of the concentrations of reacting components in 
the incident flow far from the particle is zero, i.e. 

at fi c,, = 0. 
Rf=l 

4. TRANSLATIONAL STOKESIAN FLOW 

For a uniform translational Stokesian flow the 
liquid velocity distribution in dimensionless variables 
is determined by the stream function 

Here the characteristic velocity scale is the flow 
velocity at infinity U = U,; the angle 8 is reckoned 
from the forward stagnation point on the sphere 
surface. 

Let us investigate the problem (2.1)-(2.9) and (4.1) 
by the method of matched asymptotic expansions in 
small Peclet numbers. Conditions (3.2) are assumed to 
be fulfilled. Then, similar to El], the inner and outer 
regions are determined as a, = (1 I r I O(E- “)\, and 
QD = {0(&Ci) I rf (“contracted” coordinate p = ET). 

Similarly to [1] and [12], it can be shown that in the 
case of translational Stokesian flow around a sphere, 
equation (4.1), the temperature and concentration 
distributions over the inner boundary of the outer 
region 8, (i.e. at I N E - ‘) can be presented in the form 
(m = 1, . ..) M) 

r=O(&-‘),T=Y(Po,P ,,‘.., P‘V) 

X 

i 

r-l + ~P,(cosB-1) - ;P;hlP,+D(P;;) 
I 

, 

I = 0(&-l), c, = q&P,, P,, . .., P,) 

X 

i 

r-1 +fp,(c0se-i) - ~P~lnP~+~(~~) 
i 

. 

(4.2) 

Here, just as in the case of a shear flow (see Section 
3), Y and @, are unknown functions determined in the 
course of the problem solution. 

In the inner region R,, the temperature and con- 
centration distributions, as well as the temperature 
field inside a particle, are sought in the form 

T = TO+P,T’*) + Pi inP,,T”) + O(P$, 

t = to + Pot(‘) + Pi InP,t’z) + O(P$, (4.3) 

c m = c:’ + P&p + P; lnP#&’ + O(Pk). 

Substitution of equation (4.3) into equations 
(2.1)-(2.3), with account of equation (3.2), and sub- 
sequent separation of terms at the same ‘powers’ of the 

small parameter E yield the following equations for the 
functions c$‘, Vk) and tCk) 

A,$ = 0 1 ATck’ = 0 7 At’&’ = 0. I 

At”’ = 0 (k = 0 9 2) 7 

AC”’ = a 
1 a(r-l, *I 

____ 
m mr2 sir-113 f3(r, 0) ’ 

1 a(r-‘, $1 -~ 
AT”’ = a’ rz sin B a(r, 0) 

(a,n=const;m=O,l ,..., M), 

In deriving the second group of equations (4.4) (at k 
= 1), it has been taken into account that the zero terms 
of inner expansion (at k = 0) depend only on the radial 
coordinate r and are determined by the binomial of the 
form A + Br-r. 

Now, employing the mean-value operator (3.6), 
taking into account the equality (cos 0) = 0 and using 
the same sort of reasoning as with the case of a shear 
flow, we obtain, for determining the mean Sherwood 
and Nusselt numbers, the same algebraic system of 
equations (3.ll)and (3.12) where the parameters Sh,, 
and Nu, are determined, according to Acrivos and 
Taylor [ 11, as 

Nu, = 1 f iPo + ;Pg InP, + O(Pg). 

It should be noted that at small Peclet numbers, 
equations (3.2), in the general case of an arbitrary 
~compressible (both viscous and non-viscous) fluid 
flow past a sphere, by virtue of the fact that the zero 
term of the inner expansion is independent of the type 
of flow and depends on the radial coordinate r alone, 
the system (3.ll)and(3.12)providesacorrect result for 
mean Sherwood and Nusselt numbers at least for the 
first two terms of the corresponding asymptotic expan- 
sion. In this case the parameters Sh,, and Nu, 
correspond to a purely diffusional (thermal) mode of 
reaction on the sphere surface under the same flow 
conditions. 

In the case of an isothermal reaction, which cor- 
responds to h, = 0, m = 1,. . ., M, the mean Sherwood 
numbers are determined from the solution of the 
system of equations (3.11) at Nu = 0. The results 
reported in [12] can be obtained by solving the first of 
equations (3.11) and (4.5) at M = l,fi = kf(c). 

5. EXAMPLES OF I~~~MAL SURFACE 
REACTIONS 

In the solution of specific problems, the system (3.11) 
and (3.12) can be very conveniently used to analyze the 
dependence of the mean Sherwood and Nusselt num- 
bers on the reaction kinetics, with the parameters Sh, m 
and Nu, for the shear and translational flows being 
determined from formula (3.13) and (4.5), respectively. 
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Now, we shall consider several simple types of chemi- 
cal reactions occurring on the particle surface. 

As is conventional for Frank-Kamenetsky’s chemi- 
cal kinetics [16], the components of the reacting 
substance will be traditionally denoted by letters A, B, 

Sh,= -(c,, D,ic, r D,)Sh,. (5.5) 

C, . and so on, while the concentrations of reagents 
will be labelled by letters instead of numerals (c,, cg,. 

Irreversible Znd-order reaction (A + B + C) 
For an irreversible 2nd-order surface reaction oc- 

and so on); in the presence of one reacting component 
in the flow the subscripts on concentration and other 

curring at the rate 

parameters are omitted. F, = F, = k,c;c;, (5.6) 

Surface reaction of an arbitrary order M = 1 
the system (3.11) yields the following values for the 
mean Sherwood numbers 

For the K-order reaction the surface reaction rate, 
equation (2.9), is determined by the formula 

F(c*) = k,c*” (k. > 0). (5.1) 

Sh, = fShAx {l + s + p 

In this case the system (3.11) is reduced to one 
-[s2 + 2s(l + p) + (1 - p)2]i*2), (5.7) 

equation for determining the mean Sherwood number 

(5.2) 
Successive stepwise lst-order reaction A + B -+ C 

For a translational flow, the substitution of ex- 
k, k. 

pression for Sh, (4.5) with subsequent solution of 
Consider the following reaction occurring on the 

equation (5.2) (by series expansion in small parameter, 
surface 

i.e. Peclet number) for Sh yields the result obtained in F, = k,c;, F, = -k,cz + k,c;, F, = - k,c;, (5.8) 

[12]. It should be noted, however, that for practical 
calculations it is more convenient to use directly 

in which both stages are the lst-order reactions. 

equations (5.2) and (4.5). 
We shall assume for simplicity that the concentration 

For a shear flow, relation (3.13) should be used in 
of component A far from the particle is equal to unity, 

equation (5.2). 
while the concentrations of the components B and C 

Equation (5.2) is easily resolved explicitly at K = l/2, 
are zero, i.e. cAJ = 1, ca I = 0, ccV_ = 0. 

1 and 2. Thus, for a shear flow, equations (3.1) and 
By the use of equations (3.14) we obtain the integral 

(3.13), at K = 1 we obtain 
mass flux of the final product of reaction C to the 
particle surface 

Sh = g(1 - cxgP’.2)-1 + o(Pjl), 

g= l+$ -l. 
i 1 

I, = - 
KAKBIA. 

(5.3) 
(KA+IA.)(KB+IB.)' 

II 

At k, + r; (g -+ l), which corresponds to a dif- K A,B = 4na2k,,,, I, = 
K~l~, 

fusional mode of reaction, equation (5.3) yields the 
i: K,+IA.' 

result obtained by Acrivos [8]. K~l~xl~, 

In the case of translational Stokes flow, equations 
I, = - (5.9) 

WA + IAL)(KB + IBx) 

(4.1) and (4.5), at K = 1 equation (5.2) provides the first 
three terms of expansion that have been obtained by 
Taylor [ll] and by Gupalo and Ryazantsev [9]. Adsorption occurring by the Langmuir kinetics 

It follows from equation (5.2) that the mean Sher- 
When the adsorption rate on the particle surface is 

wood number decreases monotonically with an in- determined by the Langmuir isotherm, we have [16] 

crease in the reaction order K (it is assumed that c, 
=l) and increases monotonically with increase of F=k 
the rate constant k,. 

o& (b = constant). (5.10) 

Reversible lst-order reaction (A $ B) Equations (2.9), (3.11) and (5.10) yield the following 

Consider an isothermal reversible surface lst-order expression for the mean Sherwood number on the 

reaction the rate of which is determined by particle surface 

F,= -F,=k,c;--k,c,*. (5.4) 

Here k, and k, are the reaction rate constants. 
d-(d-4& , 

x x 

Using relations (2.9) and (5.4), from the first two 
equations of (3.11) we obtain for the mean Sherwood 
numbers 

d=l+b+$. (5.11) 
( I I r 
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6. NONISOTHERMAL SURFACE REACTION OCCURRING 
BY THE ARRHENIUS LAW 

Consider now a nonisothermal chemical lst-order 
reaction (in the presence of one reacting component in 
the flow M = l), which occurs by the Arrhenius law on 
the sphere surface. In this case the surface reaction rate 
is determined by [16] 

F = k,c* exp( - E/RT*). 

Here E is the activation energy, R is the universal gas 
constant, k, the reaction rate constant. 

The system of equations (3.11) and (3.12) is reduced 
to the following equation for determination of the 
mean Sherwood number 

(6.1) 
w = E(RT,)-‘, h = -hi > 0. 

To simplify the analysis, equation (6.1) is rewritten 
in the form of the system 

q = k exp( - o/z)[ 1 + k exp( - W/Z)] - ‘, (6.2) 

q = tg/.?(z- l)(z = 1 +aq, tgp = (r-l), (6.3) 

q = Sh/Sh,, k = ak,(DSh,)-‘, o = hShJVu,. 

Assuming now the parameter k to be fixed, let us 
investigate the number of roots of equation (6.1) 
depending on variations of the parameters o, 
u E [0, + ‘m] (of the angle fi, 0 < /3 < 11/2). The num- 
ber of roots of equation (6.1) is determined by the 
number of intercepts of the straight line (6.3), that 
passes at the inclination angle j? to the axis z on the 
plane z, q through the point (l,O), with the curve (6.2) 
(Fig. 1). Depending on the magnitude of the parameter 
(I) the following situations are here possible : (1) at any 
Q E [0, cc] the set of equations (6.2) and (6.3) has the 
single root q = q(w, a); (2) there is an interval (a,, cr2) 
within which at each or .< u < e2 the system (6.2) and 
(6.3) has three roots, while at the end points of the 
interval g = a,(n = 1,2) it has two roots; in this case, 
for each cr outside this interval 0 I 0 < o1 or cr2 < Q 

9, --__-- --------- 

4 

FIG. 1. Qualitative behaviour of the curve (6.2) on the z, q 
plane; straight line 1 is the asymptote (6.2) at z + co. Points B 
and Q correspond to the points of tangency of the straight line 
(6.3) with the curve (6.2); the domain of the values of 
parameter /?, for which there are three stationary modes of 

FIG. 2. Qualitative behaviour of the curve (6.4). Hatched 
region corresponds to those values of the determining 
parameters o and u at which there are three modes of reaction 
on the particle surface. Curves 1 and 2 correspond to the 

reaction, is between lines 2 and 3. asymptotes (6.5) and (6.6). 

there corresponds the single root of equation (6.1); B. 
= arc rg a; l (here and henceforth, whenever there are 
several modes of reaction on the particle surface, the 
problems of their stability are not investigated). 

It can be shown that the locus of the points of 
tangency of the straight line (6.3) with the curve (6.2) 
[which corresponds to two roots of equation (6.1)] on 
the CM plane is prescribed parametrically as 

w(q) = (l-q)yW’(l), a(q) = q-‘T’(l), 

y = h {k(q-’ -l)}, 

S(n) = S(q, k, n) = (1 -nq)y - n. (6.4) 

At w + rx) the limiting curve (6.4) has two branches 
that recede to infinity, with the upper one being 
asymptotic to the curve 

a=k-‘w-‘expw (w+ a) (6.5) 

and the lower having the asymptote 

u = (q;’ - 1)w - 2q;’ (o+ m), (6.6) 

where q* < k(k + 1)-l is the root of the equation 
S(q,, k, 1) = 0. 

The curve (6.4) on the wu plane has a sharp peaked 
singularity (u+,, ue), which is its absolute minimum and 
is located on the hyperbola 

I-@, a) = uw - 4u - 4 = 0. (6.7) 

It is specified by the value of the parameter q = q,,, 
where q,, is the root of the equation S(q,, k, 2) = 0. 

The local behaviour of the curve (6.4) in the vicinity 
of the singular point is prescribed by 

u - 60 = tgy(o-w,), w>w,; tfl = iq;i - 1, 

00 = e&o) = 4(1 -qo)(l-2qo)-i, 

u,=u(q,)=q,‘-2. (6.8) 

Figure 2 shows qualitatively the curve (6.4) on the 
wu plane. In the hatched region R, located between the 
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two branches of the curve (6.4) (which are determined 
by the ranges of the parameter q: 0 -c q < q. and q. -c 
q < q*, respectively), at fixed w > o,, the segment I(o) 
= {cT~(w) < e 2 o,(w): (solid line in Fig. 2) specifies 
those values of 0 at which equation (6.1) has three 
roots. 

It CXI be shown that aq,/ak > 0, aq,/dk > 0. 
Therefore, with a change in the parameter k the whole 
region R = R(k) undergoes deformation due to 
equations (6.5)-(6.8) as follows: with an increasing 
parameter k the singular point located on the hyper- 
bola (6.7) moves downward and to the right, with the 
angle of inclination y to the axis o becoming smaller ; 
the asymptotic curve (6.5), which corresponds to the 
maximum possible values of the parameter u comes 
closer to the axis win inverse proportion to k, while its 
point of intersection with the axis w, still remaining on 
the right-hand semi-plane, moves to the right of the 
zero. 

In Fig. 2, dashed lines I and II correspond to the 
asymptotic curves (6.5) and (6.6); the arrows at the 
boundary of the region show the direction of the points 
of curve (6.4) into which they move with an increase in 
the parameter k ; the arrows on the hyperbola I(o, 6) 
= 0 show the direction of the singular point (w,, oO) 
moving with an increase in the parameter k ; the arrows 
on the axis w show the direction of the points of 
intersection between the asymptote (6.6)and the axis o 
with increasing k, the intersection point coordinate in 
this case being always above 2. 

It is seen from the system of equations (6.2) and (6.3) 
that the following limiting relations are valid 

r~ -+ 0, q + (1 + k-le’o)-‘; 

cr + x, q + k(k + 1)-i. (6.9) 

With decreasing particle or shear flow velocities the 
mean Sherwood and Nusselt numbers, corresponding 
to a purely diffusional mode of reaction, equations 
(3.13) and (4.5), decrease. In this case, as follows from 
equation (6.1), the point A, corresponding to a high- 
temperature mode of reaction, moves to the left along 
the curve (6.2) up to the point B (Fig. 1). On having 
passed B, the high-temperature mode can no longer 
exist, hence the point B “jumps over” from the upper 
part of the curve to the lower one, to the point C, which 
already corresponds to the low-temperature mode of 
reaction on the particle surface. 

7. INTERPOLATION FORMULA FOR MEAN SHERWOOD 
NUMBERS AT ARBITRARY PECLET NUMBERS, 

SOME CORRELATIONS 

Comparison with the results [17] obtained for the 
other limiting case of large Peclet numbers (it should 
be noted that in the isothermal case at M = 1 equation 
(3.11) coincides, to the accuracy of transformations, 
with the interpolation equation (40) derived intuitively 
in [17]), suggests the possibility of using the system 
(3.11) and (3.12) as interpolation equations for approxi- 

mate determination of mean Sherwood and Nusselt 
numbers within the whole range of Peclet numbers 0 
I P, < r; (at 6 << 1) in the presence of not very large 
number of reagents in the flow and simple reaction 
kinetics. Then, as the parameters Sh, )I, Nu, entering 
into the system of equations (3.11) and (3.12), one 
should use the values of the mean Sherwood and 
Nusselt numbers obtained by solving an auxiliary, 
linear and much more simple, problem which cor- 
responds to a purely diffusional mode of reaction on 
the sphere surface (m = 0, 1. ., M) 

Sh,, = - (LC&%>(,=,, Nu, = - (aT/W(,=,, 

At,,, = P,(uV)c*,; r -+ x, i?,,, + 0; 

r=l,cm=l; &ET. (7.1) 

At present there is a fairly large number of solutions 
of the problem (7.1) obtained for different patterns of 
flow by numerical, analytical and approximate 
methods. 

At large Peclet numbers (in the diffusional boundary 
layer approximation) for an isothermal reaction of 
order K = l/2, 1, 2 the testing for applicability of 
equation (5.2) was carried out for the whole range of 
the parameter K = ak,D- ‘cKx- 1 by comparing its root 
Sh with the accurate results obtained for the Sherwood 
number by numerical integration of respective integral 
equations in the case of a translational Stokesian flow 
around a sphere [18], circular cylinder [19], droplet 
and bubble [20]. In these cases, the characteristic 
length scale is expressed in terms of the radii of the 
sphere, cylinder and droplet, and the characteristic 
velocity, by that of the flow at infinity U x (for a droplet 
and bubble the quantity U I (fi + 1)-i has been taken 
as the characteristic velocity, where p is the ratio of 
dynamic viscosities of the droplet and surrounding 
liquid ; p = 0 corresponds to a gas bubble). The results 
of comparison between the accurate and approximate 
values of the Sherwood number show that the maxi- 
mum deviation of the root of equation (5.2) from the 
mean Sherwood number [18-201 is observed at K = 
1.5-5.0 and does not exceed 779%. 

The adequacy of the approximate equation (5.2) for 
application at intermediate Peclet and Reynolds num- 
bers in translational flow past a sphere has been 
checked by comparison with the known results of 
numerical solution of a respective problem for the lst- 
order reaction K = 1 on the sphere surface at P = 10, 
20 and 50. It follows from Table 13 presented in [21] 
that the use of equation (5.2) yields very good results, 
with the error not exceeding 1.5%. 

The above comparison provides good reason to 
believe that in the case of isothermal reactions, in order 
to approximately determine mean Sherwood numbers 
within the whole range of Peclet numbers, it is a sound 
plan to use the interpolation system of equations (3.11) 
and (3.12) provided there is a small number of reagents 
in the flow and the kinetics of reactions is simple 
enough (with the only one mode of reaction on the 
sphere surface). 
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Some generalizations for the case of an arbitrarily 
shaped particle 

It can be shown that for an arbitrarily shaped 
particle freely suspended in a shear flow (Gij) in the 
case of isothermal reaction of the first order K = 1 
[equation (5.1)] the following formula is valid for the 
mean Sherwood number 

Sh 
Sh, = 1 + crSh,P”’ + c?Sh;P 

+ 0(P312), CI = cr(Gij). (7.2) 

Here, the mean Sherwood number Sh, corresponds 
to mass transfer between a reacting particle (at F = 
k,c*)and a stationary medium (i.e. at P = 0), while the 
coefficient c( and the Peclet number P are determined 
according to [7] see also Section 3, equation (3.3)]. 

Equation (7.2) is derived in the same manner as has 
been used in [8] to investigate the diffusional mode of 
reaction (k, -+ 3~) and just as a corresponding 
extension of work [2] was made in [lo] to a trans- 
lational flow. Equation (7.2) is a natural generalization 
of the results of work [8]. In the case of a solid sphere, 
Sh, = g, equation (7.2) coincides with (5.3) accurate to 
o(P3’2). 

Consider now the case of an arbitrary kinetics of 
surface chemical reaction. For simplicity, let us restrict 
ourselves to the study of the case of an isothermal 
reaction with the presence in the flow of one reacting 
component (M = 1); it is also assumed that there is the 
only one mode of surface reaction within the whole 
range of governing parameters. 

Having chosen the radius of a volumetrically equiva- 
lent sphere a,, for the characteristic particle dimension 
we obtain the relation 

A = Sh-‘f(Sh/Sh,). (7.3) 

By virtue of (3.11), A = 1 for the sphere; in the 
general case A = A (1; t, P), where 7 is the shape 
parameter. At P + 0, A + Sh;‘f(Sh,/Sh,,), where 
Sh, is the mean Sherwood number for a fixed particle 
at the prescribed kineticsf: while Sh,, is for a fixed 
particle reacting in a purely diffusional mode. Taking 
into account this limiting relation and assuming that at 
small Peclet numbers for an arbitrarily shaped par- 
ticle, just as for a sphere, one can restrict oneself to the 
asymptotic expansion of A at P + 0 on the RHS of 
equation (7.3), we obtain the following equation to 
determine the mean Sherwood number Sh 

Sh f (ShlSh,) 
sh, = f(Sh,/Sh,,)’ 

(7.4) 

This equation allows an easy calculation of the 
Sherwood number for a moving reacting particle once 
the parameters Sh,, Sh,, Sh,, are known. Thus, for 
the lst-order reaction (F = k,c*) equation (7.4) yields 

1 1 1 1 
__-++--_, 
Sh Sh, Sh, Sh,, 

(7.5) 

In order to check the above calculation procedure 
for the convective mass transfer of droplets and 
arbitrarily shaped particles let us use an analytical 
solution of the problem for the lst-order surface 
reaction obtained in [lo] for a translational Stokesian 
flow by the method of matched asymptotic expansions 
in small Peclet number 

Sh = Sh, + i ShgP + k &ThgP2 1nP + 0(P2). 

(7.6) 

Here r is the magnitude of the dimensionless hy- 
drodynamic resistance of particle at prescribed orien- 
tation in the flow (it is equal to the dimensional force 
related to the Stokesian resistance of the sphere of 
radius a,, i.e. 6npU,a,; p is the dynamic fluid 
viscosity). 

The use of equation (7.6) will obviously yield, 
accurate to the terms of order P2, that 

1 1 
_- 

si; - Sh, 
-‘P -i<P21nP 

2 

1 
=&+-&_, 

0 6 She, 

which coincides exactly with equation (7.5). 
It can be shown in a similar way that equation (7.2) 

obtained at small Peclet numbers for an arbitrary 
shear flow past an arbitrarily shaped particle can be 
expressed in the form of equation (7.5). Bearing this in 
mind and taking into account that at any f equation 
(7.4) at P = 0 leads to an accurate result for the particle 
of any shape, while for a spherical particle it gives 
several first terms of asymptotic expansion for the 
mean Sherwood number at small Peclet numbers and 
can be successfully used also for approximate de- 
termination of Sh at any P’s (0 -< P < co), it is thus to 
be expected that equation (7.4) can also be applied for 
approximate determination of the mean Sherwood 
number on an arbitrarily shaped particle surface 
within the whole range of Peclet numbers at simple 
enough kinetics of surface reaction. 

It should be noted that equation (7.4) can be written 
in the form of equation (3.11) on having chosen 
a,[A];do as the characteristic length scale. 

General boundary conditions 
In some problems on heat and mass transfer be- 

tween particles (droplets) and the flow (2.1)-(2.9) one 
can encounter other boundary conditions than those 
given by equations (2.6) and (2.7). Thus, for vapour 
adsorption on the liquid droplet surface, being in the 
saturation state, the following boundary condition is 
used : r = 1, c* = dT* + b (d and b = constants) [22]. 

It can be shown that at small Peclet numbers 
equation (3.2), in the general case of the boundary 
conditions on the particle surface (m = 1, 2, . . ., 
M+ 1) 
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r = l,f, 
( 

aT at 
T, t, c ,,..., cy, - -, 

ar ’ & 

ac, ah - _ 
ar ’ ‘.” & > 

= 0 (7.7) 

the mean Sherwood and Nusselt numbers in the 
problem (2.1)-(2.5), (2.8) and (2.9) are determined from 
solution of the system 

Sh,, 
’ “.’ Sh,, 

-Nu, 0, -Sh,, . . . . -Sh, = 0, (7.8) 

where the parameters Nu, and Sh,, for the shear and 
translational Stokesian flow past a sphere are pre- 
scribed by equations (3.13) and (4.5), respectively. 

The system (7.8) is also valid for a purely external 
problem (2.1), (2.2), (2.4), (7.7) and (2.9), in which the 
functionsf, are independent oft and at@-. In this case, 
for a translational Stokesian tlow past a spherical 
droplet the governing parameters occurring in the 
system (7.8) [or in (3.11) and (3.12)] are of the form [2] 

%nm= 2m 
1 +‘p +L2+3B -P$lnP, + O(Pi), 

61+p 

12+3/l 
Num= 1 +fP”+- - Pg lnP, + O(P#. 

61+/I 

The inverse problem 
The results obtained make it possible to study the 

inverse problem of mass transfer of reacting particles in 
the flow and allow determination of the surface 
chemical reaction rate from the known integral fluxes. 
Thus, in the case of an isothermal reaction at M = 1 

the experimental data on Sh at various Pe numbers (i.e. 
at various velocities of flow past the particle, V,,) can 
be used to construct, by equation (3.11), the points 
with the coordinates f = Sh and x = Sh/Sh, 
(experimental values of Sh, are well known see, e.g. 
[21]), that determine the relation f = f(x) which is 
sought for. 
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REACTION CHIMIQUE NON ISOTHERME A LA SURFACE DE LA PARTICULE DANS UN 
ECOULEMENT LAMINAIRE 

R&mn&-On considere la convection stationnaire pour une sphere conductrice de la chaleur en reaction 
dans un ecoulement laminaire, parallele, avec une reaction chimique non isotberme sur sa surface avec une 
vitesse d&pendant arbitrai~~nt de la temperature et des concentrations. 

On montre que pour les flux globaux de chaleur et de masse des composants (nombres moyens de Nusselt 
Nu et de Sherwood S/t,,,) a dkterminer pour les petits nombres de P&let, il suffit de resoudre le systeme 
d’equations algkbriques universe1 (transcendant): 

Sh, = fm ( ;, , 

m 

$, . , a, 

Im 

+ 

Mm > 

Nu = F h,Sh,, 
ill=1 

qui est notablement plus simple que le systeme initial d’equations aux d&ivt+es partielles. Le systeme suggere 
permet d’obtenir pour les nombres de Sherwood et de Nusselt les quatre premiers(tcoulement sicisaillement) 
et les trois premiers termes (Coulement de transition) du developpement asymptotique en petits nombres de 
P&let. 

On Ctudie une reaction irreversible, isotberme du seconde ordre et une &action du premier ordre a 
echelons successifs. On a consider6 en detail le cas dune reaction en surface non isotherme qui suit la loi 
d’Arrhenius avec un composan t r6actan t present darts l%oulement. On analyse padsorption sur la surface de 
la particule, gouvernb par la cinetique de Langmuir. 

En comparaison avec des resultats anttrieurs pour des reactions isothermes I des nombres de P&let 
modtres ou grands, on montre qu’avec un choix judicieux des parametres Sh,, (Nu,), le systeme algebrique 
propose peut btre applique avec suc& 1 la determination approchh des nombres de Sherwood moyens darts 
tout le domaine des nombres de P&let. 

Les resultats obtenus permettent l‘etude du probleme inverse de transfert de chaleur et de masse. pour des 
particules en r6action dans l’ecoulement, permettent par exemple de determiner expli~te~t la dependan* 
de la vi&sse de reaction en surface aux concentrations a partir des flux globaux que Ton peut determiner 

expdrimentalement. 

NICHTISOTHERME CHEMISCHE REAKTION AN EINER TEILCHENOBERFLACHE BE1 
LAMINARER STRGMUNG 

Z~~nf~ng-Der Bericht befaBt sich mit der station~ren konvektiven. ~i~usion an eine warmeleit- 
ende, chemisch reagierende Kugel in einer Iaminaren Trattslations- und Scherstriimung bei ni~ti~~~ 
chemischer Reaktion an ihrer OberfIache, deren Geschwindigkeit von Temperatur und Konzentration 
abhangt. Es wird gezeigt, da13 es fur die integralen W&me- und Massenstrome der reagierenden 
Komponenten au ein Teilchen (d. h. mittlere Nusselt-Zahl Nu und mittlere Sherwood-Zahl Sh,), die fiir 
kleine Peclet-Zahlen bestimmt werden sollen, geniigt, das folgende universelle algebraische (transzendente) 
Differentialgleichungssystem zu l&en 

Nu = i h,Sh,, 

das wesentlich einfacher ist als das urspriingliche System partieller Differentialgleichungen. Das vorgeschla- 
gene Gleichungssystem ermijglicht es, fur die Sherwood-Zahl und die Nusselt-Z&l die ersten vier Terme 
(~herstr~mung) und die ersten drei Terme (L~ngsstr~m~ng) der ~tsprech~den asymptoti~hen Reihe- 
nentwicklung bei kleinen Peclet-Zahlen zu bestimmen. Es wurden eine irreversible isotherme Reaktion 
zweiter Ordnung und eine sukzessive, schrittweise Reaktion erster Ordnung untersucht. Der Fall der 
nichtisothermen Reaktion an der Oberflache, die nach dem Arrhenius-Gesetz ablluft, mit einer reagierenden 
Komponente in der Stromung, wurde im Detail analysiert. Die Adsorption an der Teilchenoberfliiche, deren 
Cieschwindigkeit von der Langmuir-Kinetik bestimmt wird, wird untersucht. Auf der Grundlage eines 
Vergleichs mit friiheren Ergebnissen fur isotherme Reaktionen bei mittleren und groflen Peclet-Zablen wird 
gezeigt, da13 mit einer geeigneten Vorgabe der ~stimm~den Parameter Sh,, (Nu,) das vorgeschlagene 
algebra&he Gleichungssystem such erfolgreich fur die naberungsweise Bestimmung der mittleren 
Sherwood-Zahlen innerhalb des genatmten Peclet-Zahlenbereichs angewandt werden kann. Die erhaltenen 
Ergebnisse ermiiglichen die Untersuchung der inversen Wlrme- und Stoffi.lbergangsprobleme von chemisch 
reagierenden Teilchen in einer Stromung, d.h. sie ermiiglichen es, anhand vorhandener integraler Striime, die 
experimentell bestimmt werden kiinnen, die Abhlngigkeit der Konzentrationen von der Oberfliichenreak- 

tions-Geschwindigkeit explizit zu bestimmen. 
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0 HEki30TEPMM~ECKOti XMMMlIECKOti PEAKLJMM HA I-IOBEPXHOCTM qACTMqb1 
B JIAMHHAPHOM nOTOKE 

AIIHOT~UHSI - PaccMarpesaercn crauliofiapHan Komeimmiafl AH@IJ~WSI K TennonpoBonHol peare- 

pyKW&i C@.~,O6TeKaeMOiinaMHHapHblM nOCTynaTeJ7bHbIM W CABSirOBbIM IlOTOKOM IlpH IlpOTeKaHHH 

Ha CC- nOBepXHOCT&l HeH3OT’?J,MHYeCKOk XHMWIeCKOir pCaKUrtH, CKOpOCTb KOTOpOfi npOH3BOJ7bHbIM 

o6pa3oM 3aBHCHT OT TeMnepaTypbI II KOHUCHTpaUUii. 

lYIoKa3aH0, qT0 npe ManbIx wicnax IleKne nns onpenenetwin uHTerpanbHbIx npHToKos Tenna A 

BeulecTBa pearapymwx KoimoHem K qacTwe (~.e. ans~ onpenenetim C~AHHX wcen HyCCenbTa Nu 
H UepByAa #I,,,) AOCTaTO'iHO peUIHTb CJleAyIOIUyto YHHBepCanbHyH, anre6paeqecKyto (TpaHCUeHneHT- 

HyIO)CHCTeMy 

Nu= i h,Sh,, 
t?l=, 

KOTOpaSI CylUCCTBeHHO npOLUe &ICXOAHOii CUCTeMbl ypaBHeHBii B 4aCTHbIX UpOH3BOAHbIX. npemara- 

eh4afl mimeMa n03BonneTnonywTb Bcny~aecn~aroBoronoToKa~eTbIpe,a B cnyqae nocTynaTenbHor0 

-Tpa nepBbIx meHa cooTBeTcTByIouer0 acmmToTwiecKor0 pa3no;lcewin no ManbIb wicnaM neKne 
Ans wicen UepByna w HyCCSIbTa. 

kiccnenosaHa Heo6paTman ti30TepMmecKas4 peaKUHn BToporo nopnnKa w ImcnenoBaTenbHall CTY- 

UeHqaTall PaKUHn nepBOr0 nOpnAKa. nOApO6HO paCCMOTpeH CJIyYai-i HeH3OTepMH'leCKOti nOBepXHOCT- 

HOii XuMmecKoii peaKUm, npoTeKalouefi no 3aKOHy ApeHByca npe HBJIWIAH B nOTOKe OnHOii 

~arHpyIOIU'CiiKOMnOHeHTbI.AHaJlH3HpyeTCRa~cop6UUR Ha nOBepXHOCTH 'iaCTEiUbI,CKOpOCTb KOTOpOii 

onpeaennercr nawMlopoBcKotiKmieT~Koii. 

Ha OCHOBe COnOCTaBneHUI C paHee R3BeCTHbIMH pe3yJIbTaTaMH NIX H30TepMH',eCK,,X peaKUdi np&4 

yMepeHHbIX W 6onbmux YHCJIaX neKJIenOKa3aH0, ST0 IIpH COOTBeTCTByiOLUeM BbI6Ope OIlpeAeJImOIUsX 

napaMeTpoB %,,(~u,),nony~eHHal anre6paHwcKan CHCTeMa MOmeT 6bITbc ycnexoM HcnonbsoBaHa 

TaKme nm npH6JIWKeHHOrO onpeneneffm cpen~~4x wicen IIIepBym 80 BceM naana3oae wcen Ilerne. 
nOJIy'ieHHbIe ~3yJlbTaTblAaWTBO3MOlKHOCTb WCCJleAOBaTb 06paTHyIo 3aJJaqy 0 MaCCOTenJIOO6MeHe 

pearHpyloU.lHX~aCTHU B nOTOKe-TT.e. n03BOJIlllOT B RBHOM BHLle OIlpeAeJIHTb 3aBWCHMOCTb CKOpOCTA 

nOBepXHOCTHOi-4 XliMWieCKOfi peaKWill OT KOHueHTpauliii n0 H3BeCTHbIM HHTerpanbHbIM nOTOKaM, 

KOTOpbIe MoryT 6bITb 0npeneneebI H3 3KcnepuMeHTa. 


